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ABSTRACT: Intermolecular carbon-carbon bond forma-
tion between acylsilanes and organoboronic esters was
achieved by photoirradiation under almost neutral, transi-
tion metal-free conditions. In this reaction, siloxycarbenes
generated by photoisomerization of acylsilanes reacted with
boronic esters to give the formal B-C bond insertion
intermediates, which underwent unique rearrangement to
afford the cyclic R-alkoxyboronic esters. Acidic treatment of
the resulting crude products under air furnished the cross-
coupled ketones in good yields.

Acylsilanes have long been known to undergo a 1,2-shift of the
silyl group by photolysis to generate siloxycarbenes.1 This

photochemical isomerization normally proceeds under neutral
conditions at ambient temperature and is potentially useful for
carbene-mediated organic synthesis. Siloxycarbenes exhibit nu-
cleophilic character and are known to react with acidic H-X
bonds such as alcohols (X = O), HCN, and malononitrile (X =
C) to furnish the formal insertion products.2,3 Watanabe and
Nagai reported a formal insertion of siloxycarbenes into Si-H
bonds of mono- and diarylsilanes, which was proposed to
proceed via the zwitterionic species bearing a pentacoordinate
silicate moiety, 1,2-hydride shift of which gave the final pro-
ducts.4 However, it is surprising that only a limited number of
substrates have been applied to the above-mentioned transfor-
mations and that few reports have appeared, to date, utilizing
photochemically generated siloxycarbenes for C-C bond
formation5 except for the specific reactions with olefins6 and
an aldehyde.7

We envisioned that organoboronic esters 3 would participate
in a formal B-C insertion via a mechanism similar to that of the
Si-H insertion mentioned above,4b where the last step would be
a 1,2-shift of organyl groups R3 attached to the B atom, and the
resulting insertion products 5would be converted to the correspon-
ding ketones 6 by appropriate oxidative treatment (Scheme 1).
Herein, we report photochemically promoted acyl-aryl, acyl-
alkenyl, and acyl-alkyl coupling reactions between acylsilanes and
boronic esters without the use of transition metal catalyst.

First, a mixture of 4-methoxybenzoyltrimethylsilane (1a) and
4-(trifluoromethyl)phenylboronic acid neopentyl glycol ester
(3a) was irradiated in degassed acetonitrile with a 500-W super-
high-pressure Hg lamp at room temperature (Scheme 2).8 As a
result, a 1:1 adduct between 1a and 3a was observed in the crude
materials in∼30% yield (determined by 1HNMR analysis). This

adduct was unstable toward purification by preparative TLC
(silica gel) under air, and the benzophenone derivative 6aa was
finally isolated in 30% yield.9 Careful analysis of the crude
mixture by 1H, 13C, and HMBC spectra revealed that the struc-
ture of the primary product was not the initially assumed 5aa but
the seven-membered ring compound 7aa, which is thought to be
formed via a unique rearrangement of the siloxy and the alkoxy
groups from the B-C insertion product 5aa.10,11

Since the expected carbon-carbon bond formation was
realized simply by photoirradiating the mixture of 1a and 3a at
room temperature, we then optimized the reaction conditions to
improve the yield of the cross-coupling product 6aa.12,13 Among
the solvents examined (2 equiv of 3a was used), nonpolar
solvents such as benzene, cyclohexane, and hexanes gave the
desired products in satisfactory yields (75%, 86%, and 80% yields,
respectively),14 while ethereal solvents such as Et2O and THF
did not improve the yield (46% and 35% yields, respectively).14

In hexanes, the amount of the boronic ester employed could be
reduced to only a slight excess. Furthermore, when the reaction
was conducted in the presence of 4 Å molecular sieve (MS4A) in
a closed vessel, the yield of 7aa in the crude mixture was impro-
ved to 95% (determined by 1H NMR analysis). Acidic treatment
(1MHCl in THF at rt under air) of thus-obtained crude mixture
followed by silica gel chromatography gave the ketone 6aa in
91% yield (Table 1, entry 1).15

We then investigated the effects of steric bulk of the silyl group
(Table 1). Although the substrate with a TBS group gave the
corresponding ketone 6aa in high yield (entry 2), a TIPS group
dramatically slowed down the reaction, and most of the starting
materials were recovered (entry 3).16

Concerning the ester moiety of the boronic acid, the reaction
of a pinacol ester derivative also gave the coupling product in
good yield, but the reaction rate was slower than that of a
neopentyl glycolate.17 These results indicated that the combina-
tion of sterically less hindered substrates, acyltrimethylsilane and
boronic acid neopentyl glycol ester, is suitable for the present
reaction.

Scheme 1
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With the optimum set of reaction conditions in hand (Table 1,
entry 1), we next investigated the scope of this novel acyl-aryl
cross-coupling reaction (Table 2). With electron-rich aroylsilane
1a, arylboronic esters of various electronic properties could be
employed (entries 1-10). It is noteworthy that arylboronic
esters substituted with labile functional groups such as acetyl,
formyl, and nitro could be applied because of the neutral con-
ditions (entries 4-6). o- And p-methoxyphenylboronic esters
showed comparable reactivity (entries 8 and 9), but mesitylbor-
onate did not react with 1a probably due to the steric hindrance
around the boron center. An R,β-unsaturated and a saturated
ketone could be obtained by employing an alkenyl- and an
alkylboronic ester, respectively (entries 11 and 12). Although
acylsilanes with no electron-donating group exhibited somewhat
poorer reactivity, addition of a catalytic amount of acridine as a
triplet sensitizer gave satisfactory yields in some cases.18,19 An
ortho-substituted benzoylsilane and a heteroaroylsilane also
participated in the cross-coupling (entries 15 and 16). Further-
more, aliphatic acylsilanes including an R,β-unsaturated acylsi-
lane were also applicable to give the coupling products in good to
high yields (entries 17-21).20

To gain insight into the proposed unique rearrangement of the
B-C insertion intermediate 5 into the seven-membered ring
compound 7, we then carried out several NMR experiments
(Scheme 3, see Supporting Information for details). In the
reactions of aroylsilanes, the rearranged compound 7 was ob-
served as sole product regardless of the substituent on the boro-
nic ester employed.21 In contrast, formation of the B-C inser-
tion product 5was observed in the reactions of the alkanoylsilane
1h. With the alkylboronate 3n, 5hn was obtained as an exclusive
product, which was stable at room temperature but rearranged to
7hn at 120 �C. With the alkenylboronate 3l, a 2:1 mixture of 5hl

and 7hl was observed just after consumption of 1h, suggesting
that transformation of 5hl to 7hl partially occurred under the
reaction conditions. Actually, this mixture was almost completely
converted to 7hl at room temperature after 2 days.

These results clearly indicated that the rearrangement of the
B-C insertion product 5 to 7was a thermodynamically favorable
pathway22 and its activation barrier was largely affected by the
electronic nature of the substituent. Probably, the driving force of

Scheme 2

Table 1. Effects of the Silyl Group

entry Si time/h yield/%

1 TMS 1a 1.5 91

2 TBS 1b 3.5 93

3a TIPS 1c 12 19
a 79% of the starting materials 1c was recovered.

Table 2. Substrate Scope under the Optimum Conditionsa

entry R1 R2 time/h yield/%

1 4-MeOC6H4 1a 4-ClC6H4 3b 4 6ab 91

2 4-BrC6H4 3c 2 6ac 85

3 4-IC6H4 3d 2.5 6ad 78

4 4-MeCOC6H4 3e 3 6ae 80

5 4-OHCC6H4 3f 1.5 6af 52

6b 4-O2NC6H4 3g 3 6ag 55

7 Ph 3h 5 6ah 93

8 4-MeOC6H4 3i 3 6ai 78

9 2-MeOC6H43j 3 6aj 90c

10 4-t-BuC6H4 3k 2 6ak 89

11d,e (E)-t-BuCHdCH 3l 1.5 6al 61

12d n-Bu 3m 3 6am 43

13 f Ph 1d 4-F3CC6H4 3a 2 6da 60

14e,f 4-F3CC6H4 1e 0.7 6ea 63

15d 2-MeOC6H4 1f 3 6fa 63

16 f 2-thienyl 1g 4 6ga 41

17g PhCH2CH2 1h 6 6ha 87

18g 4-MeOC6H4 3i 6 6hi 75

19d,g n-Bu 3m 6 6hm 76

20d,g Me 3n 6 6hn 78c

21h (E)-4-CF3C6H4CHdCH 1i 4-F3CC6H4 3a 1 60ia 49i

aUnless otherwise noted, a 500-W superhigh-pressure mercury lamp
was used. b 436 nm. cThe crude materials were treated with NaOH/
H2O2.

d 2 equiv of 3 was employed. eThe crude materials were directly
purified by silica gel without acidic treatment. f 10 mol % of acridine
was added. gA 250-W superhigh-pressure mercury lamp was used. h 5
equiv of 3 was employed. i Yield of the corresponding saturated ketone,
4-CF3C6H4CH2CH2COC6H4-4-CF3 (60ia).

Scheme 3. In Situ NMR Analyses on the Structure and
Thermal Behavior of the Products
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this rearrangement would be to reduce steric hindrance around
the Me3SiO-substituted quaternary carbon of 5.

In summary, we developed photochemically promoted acyl-
aryl, acyl-alkenyl, and acyl-alkyl cross-coupling reactions of
acylsilanes with organoboronic esters to afford a wide range of
ketones under mild reaction conditions. This is a quite rare exam-
ple that photochemistry of acylsilanes is efficiently applied for
carbon-carbon bond-forming reactions. It is noteworthy that
this overall transformation can be achieved without the use of
transition metal catalysts.23,24
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